Конденсатоотводчик с опрокинутым открытым поплавком

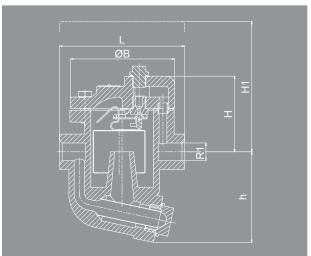
www.vyc.nt-rt.ru

Модель 343

Для извлечения насыщенного или перегретого пароконденсата или пароконденсата низкого давления.

Применим для: паропроводов, теплообменников, установок с автоматической регулировкой температуры и т.д. для химической и нефтехимической промышленности и т.д.

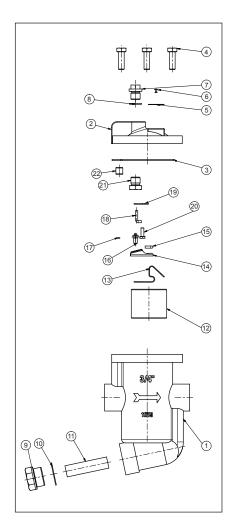
Технические характеристики


- Конденсатный горшок работает с опрокинутым открытым поплавком, который приводится в движение разницей плотности между конденсатом и паром. При наличии конденсата поплавок опускается, освобождая тарельчатый клапан и обеспечивая выход конденсата. При попадании пара поплавок поднимается и блокирует проход, тем самым обеспечивая свободную от конденсата линию. Это повторяется циклично, автоматически удаляя воздух и собирая конденсат.
- Материалы тщательно выбираются для обеспечения сопротивления износу, температуре и коррозии.
- Простая конструкция.
- Долгий срок службы с высокой рабочей эффективностью.
- Практически не требует обслуживания.
- Компактная, прочная конструкция. Уменьшенный вес и размер, которые упрощают хранение.
- Идеально подходит для среды с высокой пропускной способностью конденсата.
- Замечательное выполнение с периодическим сбросом.
- Опустошается при фактической температуре паре, что гарантирует максимальную теплоотдачу.
- Точное открытие и закрытие, предотвращающее потери пара.
- На заводских табличках предоставлена информация с указанием условий эксплуатации и установки.
- Только для вертикальной установки, направление потока указывается стрелками.
- Тихая работа.
- Нечувствителен к вибрации, гидравлическим ударам, промежуточному пару, коррозийному конденсату, гололедице и т.д.
- Различные обратные давление и температуры конденсата не влияют на работу.
- Обработанные замкнутые поверхности, которые измельчены, притерты и отшлифованы для обеспечения уровня герметичности, которое даже превышает требования EN 12266-1.
- Все продувочные устройства тщательно проверены и выполнены.
- Каждый элемент пронумерован, зарегистрирован и отслежен. При предварительном запросе, все сертификаты на материалы, обшивки, испытания и выполнения, которые предоставляются с конденсатоотводчиком.

важно

Заказано:

- Вариант производства в других материалах для особых условий работы (высокая температура, жидкость и т.д.).
- Изоляционные оболочки для предотвращения потерь радиации, вызванное суровыми погодными условиями.



F		1/2"		3/4"			1"				
СОЕДИНЕНИЯ		Газовая цилиндрическая труба с внутренней резьбой Витворта ISO 228/1 от 1978г. (DIN-259) NPT редьба, ANSI-B2.1									
Н			73		97 142						
H1			150		210			284			
$\mathbf{h}_{\scriptscriptstyle{4}}$			87		109			119			
L			130		130			180			
øВ			100		100				160		
ВЕС кг.			3,20		3,80 9,20						
МАКС. ПЕРЕПАД ДАВЛЕНИЯ В бар		11,00	8,50	4,00	12,50	8,50	4,00	14,00	8,50	4,00	
КОД 2108 –	GAS	343.50261	343.50262	343.50263	343.53461	343.53462	343.53463	343.51061	343.51062	343.51063	
	NPT	343.502611	343.502621	343.502631	343.534611	343.534621	343.534631	343.510611	343.510621	343.510631	

	№ ІНИЦЫ	ЕДИНИЦА	МАТЕРИАЛ					
	1	Корпус	Чугун (EN-JL1040)					
	2	Крышка	Чугун (EN-JL1040)					
3	3,10	Уплотнение	Клингеритовый картон					
	4	Шуруп	Углеродная сталь (EN-1.1191)					
	5	Панель	Нержавеющая сталь (EN-1.4301)					
	6	Заклепка	Углеродная сталь (EN-1.1141)					
	7,9	Заглушка	Углеродная сталь (EN-1.1181)					
	8	Уплотнение	Медь					
	11	Фильтр	Нержавеющая сталь (EN-1.4301)					
	12 Поплавок		Нержавеющая сталь (EN-1.4301)					
	13 Рука		Нержавеющая сталь (EN-1.4301					
	14	Уровень	Нержавеющая сталь (EN-1.4301)					
	15	Укрепление	Нержавеющая сталь (EN-1.4301)					
	16 Клапан		Нержавеющая сталь (EN-1.4028)					
	17 Болт		Нержавеющая сталь (EN-1.4301)					
	18	Направляющее устройство	Нержавеющая сталь (EN-1.4301)					
	19	Опора	Нержавеющая сталь (EN-1.4301)					
	20	Шуруп	Нержавеющая сталь (EN-1.4301)					
	21 Гнездо		Нержавеющая сталь (EN-1.4028)					
	22 Втулка		Нержавеющая сталь (EN-1.4301)					
		R1	1/2" - 1" (ГАЗ, NPT)					
		МАКС. ДОПУСТИМОЕ ДАВЛЕНИЕ В бар	16					
	- I	МАКС ДОПУСТИМАЯ ТЕМПЕРАТУРА В °C	220					
PAEOYNE	MA BЫXO	КС. ДОПУСТИМОЕ ПРОТИВОДАВЛЕНИЕ НА ДЕ ПО СРАВНЕНИЮ С ДАВЛЕНИЕМ НА ВХОДЕ	90%					
		МИН. ПЕРЕПАД ДАВЛЕНИЯ В бар	0,1					

ПРОПУСКНАЯ СПОСОБНОСТЬ КОНДЕНСАТА В КГ/Ч														
R1	МАКС. ПЕРЕПАД ДАВЛЕНИЯ В бар	ПЕРЕПАД ДАВЛЕНИЯ В бар												
		0,5	1	2	3	4	5	6	7	8,5	10	11	12,5	14
	11	40	80	125	140	180	190	210	225	245	260	280		
1/2"	8,5	65	115	180	215	250	265	280	290	300				
	4	110	160	210	250	280								
	12,5	65	115	180	215	250	270	290	310	330	360	375	390	
3/4"	8,5	120	180	250	290	330	360	380	400	430				
	4	160	225	310	350	410								
1"	14	65	125	200	265	310	340	385	420	450	485	500	530	565
	8,5	190	330	490	600	660	725	785	830	860				
	4	265	430	640	800	890								

Фактор безопасности

В разряженном состоянии температура конденсата равна температуре пара, поэтому действительная пропускная способность продувочного устройства меньше исходя из потока конденсата, который указан в таблице пропускной способности. Исходя из этого, необходимо учитывать фактор безопасности для требуемой пропускной способности.

	ФАКТОР БЕЗО	ФАКТОР БЕЗОПАСНОСТИ				
СФЕРА ПРИМЕНЕНИЯ	Давление					
	Постоянное	Переменное				
Процессы нагревания	2	3				
Сбор конденсата	1,5	1,5				
Паровые линии	1,5	1,5				

Принципы выбора

Необходимо выбирать продувочное устройство наименьшего размера с рабочим давлением, которое предлагает необходимую пропускную способность, умноженную на фактор безопасности между 2 и 3. Например: Давление на входе: 4 бар. Противодавление: 1 бар. Требуемая пропускная способность: 150 кг/ч. Фактор безопасности: 2. Выбранная пропускная способность: 300 кг/ч. (2х150 кг/ч).

Необходимо выбрать мод. 343, 3/4" размера, для макс. перепада давления 4

бар.

По вопросам продаж и поддержки обращайтесь:

Волгоград (844)278-03-48, Воронеж (473)204-51-73, Екатеринбург (343)384-55-89, Казань (843)206-01-48, Краснодар (861)203-40-90, Красноярск (391)204-63-61, Москва (495)268-04-70, Нижний Новгород (831)429-08-12, Самара (846)206-03-16, Санкт-Петербург (812)309-46-40, Саратов (845)249-38-78